Late domain-dependent inhibition of equine infectious anemia virus budding.
نویسندگان
چکیده
The Gag proteins of a number of different retroviruses contain late or L domains that promote the release of virions from the plasma membrane. Three types of L domains have been identified to date: Pro-Thr-Ala-Pro (PTAP), Pro-Pro-X-Tyr, and Tyr-Pro-Asp-Leu. It has previously been demonstrated that overexpression of the N-terminal, E2-like domain of the endosomal sorting factor TSG101 (TSG-5') inhibits human immunodeficiency virus type 1 (HIV-1) release but does not affect the release of the PPPY-containing retrovirus murine leukemia virus (MLV), whereas overexpression of the C-terminal portion of TSG101 (TSG-3') potently disrupts both HIV-1 and MLV budding. In addition, it has been reported that, while the release of a number of retroviruses is disrupted by proteasome inhibitors, equine infectious anemia virus (EIAV) budding is not affected by these agents. In this study, we tested the ability of TSG-5', TSG-3', and full-length TSG101 (TSG-F) overexpression, a dominant negative form of the AAA ATPase Vps4, and proteasome inhibitors to disrupt the budding of EIAV particles bearing each of the three types of L domain. The results indicate that (i) inhibition by TSG-5' correlates with dependence on PTAP; (ii) the release of wild-type EIAV (EIAV/WT) is insensitive to TSG-3', whereas this C-terminal TSG101 fragment potently impairs the budding of EIAV when it is rendered PTAP or PPPY dependent; (iii) budding of all EIAV clones is blocked by dominant negative Vps4; and (iv) EIAV/WT release is not impaired by proteasome inhibitors, while EIAV/PTAP and EIAV/PPPY release is strongly disrupted by these compounds. These findings highlight intriguing similarities and differences in host factor utilization by retroviral L domains and suggest that the insensitivity of EIAV to proteasome inhibitors is conferred by the L domain itself and not by determinants in Gag outside the L domain.
منابع مشابه
Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein.
We have previously demonstrated that the Gag p9 protein of equine infectious anemia virus (EIAV) is functionally homologous with Rous sarcoma virus (RSV) p2b and human immunodeficiency virus type 1 (HIV-1) p6 in providing a critical late assembly function in RSV Gag-mediated budding from transfected COS-1 cells (L. J. Parent et al., J. Virol. 69:5455-5460, 1995). In light of the absence of amin...
متن کاملProteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells.
The late assembly (L) domain of retrovirus Gag, required in the final steps of budding for efficient exit from the host cell, is thought to mediate its function through interaction with unknown cellular factors. Here, we report the identification of the Nedd4-like family of E3 ubiquitin protein ligases as proteins that specifically interact with the Rous sarcoma virus (RSV) L domain in vitro an...
متن کاملDivergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins.
The release of enveloped viruses from infected cells often requires a virally encoded activity, termed a late-budding domain (L domain), encoded by essential PTAP, PPXY, or YPDL sequence motifs. PTAP-type L domains recruit one of three endosomal sorting complexes required for transport (ESCRT-I). However, subsequent events in viral budding are poorly defined, and neither YPDL nor PPXY-type L do...
متن کاملMutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization.
Matrix (M) proteins reportedly direct the budding of paramyxoviruses from infected cells. In order to begin to characterize the assembly process for the highly lethal, emerging paramyxovirus Nipah virus (NiV), we have examined the budding of NiV M. We demonstrated that expression of the NiV M protein is sufficient to produce budding virus-like particles (VLPs) that are physically and morphologi...
متن کاملDifferential effects of actin cytoskeleton dynamics on equine infectious anemia virus particle production.
Retrovirus assembly and budding involve a highly dynamic and concerted interaction of viral and cellular proteins. Previous studies have shown that retroviral Gag proteins interact with actin filaments, but the significance of these interactions remains to be defined. Using equine infectious anemia virus (EIAV), we now demonstrate differential effects of cellular actin dynamics at distinct stag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 78 2 شماره
صفحات -
تاریخ انتشار 2004